Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MycoKeys ; 99: 319-362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915461

RESUMO

The genus Diaporthe (Diaporthaceae, Diaporthales) is a large group of fungi frequently reported as phytopathogens, with ubiquitous distribution across the globe. Diaporthe have traditionally been characterized by the morphology of their ana- and teleomorphic state, revealing a high degree of heterogeneity as soon as DNA sequencing was utilized across the different members of the group. Their relevance for biotechnology and agriculture attracts the attention of taxonomists and natural product chemists alike in context of plant protection and exploitation for their potential to produce bioactive secondary metabolites. While more than 1000 species are described to date, Africa, as a natural habitat, has so far been under-sampled. Several endophytic fungi belonging to Diaporthe were isolated from different plant hosts in Cameroon over the course of this study. Phylogenetic analyses based on DNA sequence data of the internal transcribed spacer region and intervening 5.8S nrRNA gene, and partial fragments of the calmodulin, beta-tubulin, histone and the translation elongation factor 1-α genes, demonstrated that these isolates represent four new species, i.e. D.brideliae, D.cameroonensis, D.pseudoanacardii and D.rauvolfiae. Moreover, the description of D.isoberliniae is here emended, now incorporating the morphology of beta and gamma conidia produced by two of our endophytic isolates, which had never been documented in previous records. Moreover, the paraphyletic nature of the genus is discussed and suggestions are made for future revision of the genus.

2.
Nat Commun ; 14(1): 7520, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980357

RESUMO

The elimination of synapses during circuit remodeling is critical for brain maturation; however, the molecular mechanisms directing synapse elimination and its timing remain elusive. We show that the transcriptional regulator DVE-1, which shares homology with special AT-rich sequence-binding (SATB) family members previously implicated in human neurodevelopmental disorders, directs the elimination of juvenile synaptic inputs onto remodeling C. elegans GABAergic neurons. Juvenile acetylcholine receptor clusters and apposing presynaptic sites are eliminated during the maturation of wild-type GABAergic neurons but persist into adulthood in dve-1 mutants, producing heightened motor connectivity. DVE-1 localization to GABAergic nuclei is required for synapse elimination, consistent with DVE-1 regulation of transcription. Pathway analysis of putative DVE-1 target genes, proteasome inhibitor, and genetic experiments implicate the ubiquitin-proteasome system in synapse elimination. Together, our findings define a previously unappreciated role for a SATB family member in directing synapse elimination during circuit remodeling, likely through transcriptional regulation of protein degradation processes.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/metabolismo , Sinapses/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Receptores Colinérgicos/metabolismo , Neurônios GABAérgicos/metabolismo
3.
ACS Omega ; 8(43): 40898-40903, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929116

RESUMO

Shiga toxins (1, 2) regularly cause outbreaks and food recalls and pose a significant health risk to the infected population. Therefore, new reliable tools are needed to rapidly detect Shiga toxin cost-effectively in food, water, and wastewater before human consumption. Enzyme immunoassay and polymerase chain reaction approaches are the gold standard detection methods for the Shiga toxin. However, these methods require expensive instruments along with expensive reagents, which makes them hard to convert into point-of-use and low-cost systems. This study introduces an electrochemical biosensing method that utilizes silver nanoparticles (AgNPs) as electrochemical tags and commercially available low-cost screen-printed carbon electrodes for detection. This study introduces the modification of reference electrodes on commercially available screen-printed carbon electrodes to detect AgNPs dissolved in nitric acid. This biosensor achieved a 2 ng/mL lowest measured concentration for Shiga toxin-1 in less than 3 h. These biosensor results also showed that the AgNP-based sensor has better linearity (for graph between peak current vs concentration) and lower standard deviation compared to gold nanoparticles (AuNP)-based electrochemical biosensors.

4.
Biotechnol Rep (Amst) ; 40: e00814, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840570

RESUMO

Electroporation is regularly used to deliver agents into cells, including transgenic materials, but it is not used for mutating zebrafish embryos due to the lack of suitable systems, information on appropriate operating parameters, and the challenges posed by the protective chorion. Here, a novel method for gene delivery in zebrafish embryos was developed by combining microinjection into the space between the chorion and the embryo followed by electroporation. This method eliminates the need for chorion removal and injecting into the space between the chorion and embryo eliminates the need for finding and identifying key cell locations before performing an injection, making the process much simpler and more automatable. We also developed a microfluidic electroporation system and optimized electric pulse parameters for transgenesis of embryos. The study provided a novel method for gene delivery in zebrafish embryos that can be potentially implemented in a high throughput transgenesis or mutagenesis system.

5.
Biomolecules ; 13(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37627312

RESUMO

The eukaryotic actin cytoskeleton comprises the protein itself in its monomeric and filamentous forms, G- and F-actin, as well as multiple interaction partners (actin-binding proteins, ABPs). This gives rise to a temporally and spatially controlled, dynamic network, eliciting a plethora of motility-associated processes. To interfere with the complex inter- and intracellular interactions the actin cytoskeleton confers, small molecular inhibitors have been used, foremost of all to study the relevance of actin filaments and their turnover for various cellular processes. The most prominent inhibitors act by, e.g., sequestering monomers or by interfering with the polymerization of new filaments and the elongation of existing filaments. Among these inhibitors used as tool compounds are the cytochalasans, fungal secondary metabolites known for decades and exploited for their F-actin polymerization inhibitory capabilities. In spite of their application as tool compounds for decades, comprehensive data are lacking that explain (i) how the structural deviances of the more than 400 cytochalasans described to date influence their bioactivity mechanistically and (ii) how the intricate network of ABPs reacts (or adapts) to cytochalasan binding. This review thus aims to summarize the information available concerning the structural features of cytochalasans and their influence on the described activities on cell morphology and actin cytoskeleton organization in eukaryotic cells.


Assuntos
Citoesqueleto de Actina , Actinas , Fenômenos Fisiológicos Celulares , Citoesqueleto , Citocalasinas/farmacologia
6.
J Fungi (Basel) ; 9(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504769

RESUMO

Four unprecedented polyketides named isoprenylisobenzofuran B (2), isoprenylisobenzofuran C1/C2 (3), diaporisoindole F1/F2 (4), and isochromophilonol A1/A2 (7) were isolated from ethyl acetate extracts of the newly described endophytic fungus Diaporthe africana. Additionally, the previously reported cyclic depsipeptide eucalactam B (1) was also identified, along with the known compounds diaporisoindole A/B (5), tenellone B (6) and beauvericin (8). The taxonomic identification of the fungus was accomplished using a polyphasic approach combining multi-gene phylogenetic analysis and microscopic morphological characters. The structures 1-8 were determined by a detailed analysis of their spectral data, namely high-resolution electrospray ionization mass spectrometry (HR-ESIMS), 1D/2D nuclear magnetic resonance (NMR) spectroscopy, as well as electronic circular dichroism (ECD) spectra. In addition, chemical methods such as Marfey's analysis were also employed to determine the stereochemistry in compound 1. All the compounds obtained were evaluated for antimicrobial and in vitro cytotoxic properties. Compounds 3-8 were active against certain fungi and Gram-positive bacteria with MIC values of 8.3 to 66.6 µg/mL. In addition, 3-5 displayed cytotoxic effects (22.0 ≤ IC50 ≤ 59.2 µM) against KB3.1 and L929 cell lines, whereas compounds 6-8 inhibited the growth of seven mammalian cancer cell lines with IC50 ranging from 17.7 to 49.5 µM (6), 0.9 to 12.9 µM (7) and 1.9 to 4.3 µM (8).

7.
MycoKeys ; 95: 131-162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251992

RESUMO

During a mycological survey of the Democratic Republic of the Congo, a fungal specimen that morphologically resembled the American species Hypoxylonpapillatum was encountered. A polyphasic approach including morphological and chemotaxonomic together with a multigene phylogenetic study (ITS, LSU, tub2, and rpb2) of Hypoxylon spp. and representatives of related genera revealed that this strain represents a new species of the Hypoxylaceae. However, the multi-locus phylogenetic inference indicated that the new fungus clustered with H.papillatum in a separate clade from the other species of Hypoxylon. Studies by ultrahigh performance liquid chromatography coupled to diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS) were carried out on the stromatal extracts. In particular, the MS/MS spectra of the major stromatal metabolites of these species indicated the production of hitherto unreported azaphilone pigments with a similar core scaffold to the cohaerin-type metabolites, which are exclusively found in the Hypoxylaceae. Based on these results, the new genus Parahypoxylon is introduced herein. Aside from P.papillatum, the genus also includes P.ruwenzoriensesp. nov., which clustered together with the type species within a basal clade of the Hypoxylaceae together with its sister genus Durotheca.

9.
Mycologia ; 115(3): 277-287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37017575

RESUMO

The recent description of the putative fungal pathogen of greenheart trees, Xylaria karyophthora (Xylariaceae, Ascomycota), prompted a study of its secondary metabolism to access its ability to produce cytochalasans in culture. Solid-state fermentation of the ex-type strain on rice medium resulted in the isolation of a series of 19,20-epoxidated cytochalasins by means of preparative high-performance liquid chromatography (HPLC). Nine out of 10 compounds could be assigned to previously described structures, with one compound being new to science after structural assignment via nuclear magnetic resonance (NMR) assisted by high-resolution mass spectrometry (HRMS). We propose the trivial name "karyochalasin" for the unprecedented metabolite. The compounds were used in our ongoing screening campaign to study the structure-activity relationship of this family of compounds. This was done by examining their cytotoxicity against eukaryotic cells and impact on the organization of networks built by their main target, actin-a protein indispensable for processes mediating cellular shape changes and movement. Moreover, the cytochalasins' ability to inhibit the biofilm formation of Candida albicans and Staphylococcus aureus was examined.


Assuntos
Xylariales , Cromatografia Líquida de Alta Pressão , Actinas/metabolismo , Citocalasinas/química , Citocalasinas/farmacologia
10.
Bot Stud ; 64(1): 8, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37052736

RESUMO

BACKGROUND: The genus Induratia is based on Induratia apiospora, a xylarialean pyrenomycete from New Zealand with clypeate uniperitheciate stromata, hyaline apiospores and a nodulisporium-like anamorph. However, because of the lack of DNA data from the generic type, its phylogenetic affinities have remained unresolved. Recently, two fungal species with teleomorphs strikingly similar to Induratia were discovered in Thailand. However, they did not produce an anamorph and were found to be phylogenetically close to the species classified within the hyphomycete genus Muscodor, which was described after Induratia. Therefore, in 2020 the species of Muscodor were transferred to Induratia, and a new family Induratiaceae was proposed. RESULTS: We have encountered an unpublished ex-holotype strain of Induratia apiospora among the holdings of the ATCC collection, enabling detailed morphological and molecular phylogenetic investigations. We observed the characteristic nodulisporium-like anamorph described in the original publication. Phylogenetic analyses of multigene sequence data revealed a close relationship of Induratia apiospora to the Barrmaeliaceae, while a close relationship to the Induratia species formerly classified within Muscodor was rejected. CONCLUSIONS: We here classify Induratia apiospora within the Barrmaeliaceae and consider Induratiaceae to be synonymous with the former. As the holotype specimen of Induratia apiospora is apparently lost, an isotype specimen from WSP is selected as lectotype. We also propose that the genus Muscodor is resurrected within the Xylariaceae, and formally transfer several Induratia species to Muscodor.

11.
Fitoterapia ; 166: 105434, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36681097

RESUMO

Chemical investigation of an endophytic fungus herein identified as Diaporthe cf. ueckeri yielded four known compounds, named cytochalasins H and J and dicerandrols A and B. Reports of acid sensitivity within the cytochalasan family inspired an attempt of acid-mediated conversion of cytochalasins H and J, resulting in the acquisition of five polycyclic cytochalasins featuring 5/6/5/8-fused tetracyclic and 5/6/6/7/5-fused pentacyclic skeletons. Two of the obtained polycyclic cytochalasins constituted unprecedented analogues, for which the trivial names cytochalasins J4 and J5 were proposed, whereas the others were identified as the known phomopchalasin A, phomopchalasin D and 21-acetoxycytochalasin J3. The structures of the compounds were determined by extensive spectral analysis, namely HR-ESIMS, ESIMS and 1D/2D NMR. The stereochemistry of cytochalasins J4 and J5 was proposed using their ROESY data, biosynthetic and mechanistic considerations and by comparison of their ECD spectra with those of related congeners. All compounds except for cytochalasins H and J were tested for antimicrobial and cytotoxic activity. Cytochalasins J4 and J5 showed neither antimicrobial nor cytotoxic activity in the tested concentrations, with only weak antiproliferative activity observable against KB3.1 cells. The actin disruptive properties of all cytochalasins obtained in this study and of the previously reported cytochalasins RKS-1778 and phomopchalasin N were examined, and monitored by fluorescence microscopy using human osteo-sarcoma (U2-OS) cells. Compared to their precursor molecules (cytochalasins H and J), phomopchalasins A and D, 21-acetoxycytochalasin J3, cytochalasins J4 and J5 revealed a strongly reduced activity on the F-actin network, highlighting that the macrocyclic ring is crucial for bioactivity.


Assuntos
Antineoplásicos , Citocalasinas , Humanos , Estrutura Molecular , Fungos
12.
ACS Appl Electron Mater ; 5(12): 6929-6937, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162529

RESUMO

Titanium nitride (TiN) has emerged as a highly promising alternative to traditional plasmonic materials. This study focuses on the inclusion of a Cr90Ru10 buffer layer between the substrate and thin TiN film, which enables the use of cost-effective, amorphous technical substrates while preserving high film quality. We report best-in-class TiN thin films fabricated on fused silica wafers, achieving a maximum plasmonic figure of merit, -ϵ'/ϵ″, of approximately 2.8, even at a modest wafer temperature of around 300 °C. Furthermore, we delve into the characterization of TiN thin film quality and fabricated TiN triangular nanostructures, employing attenuated total reflectance and cathodoluminescence techniques to highlight their potential applications in surface plasmonics.

13.
J Fungi (Basel) ; 8(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736043

RESUMO

Laying the groundwork on preliminary structure-activity relationship study relating to the disruptive activity of cytochalasan derivatives on mammalian cell actin cytoskeleton, we furthered our study on the cytochalasans of the Dothideomycetes fungus, Sparticola triseptata. A new cytochalasan analog triseptatin (1), along with the previously described cytochalasans deoxaphomin B (2) and cytochalasin B (3), and polyketide derivatives cis-4-hydroxy-6-deoxyscytalone (4) and 6-hydroxymellein (5) were isolated from the rice culture of S. triseptata. The structure of 1 was elucidated through NMR spectroscopic analysis and high-resolution mass spectrometry (HR-ESI-MS). The relative and absolute configurations were established through analysis of NOESY spectroscopic data and later correlated with experimental electronic circular dichroism and time-dependent density functional theory (ECD-TDDFT) computational analysis. Compounds 1 and 2 showed cytotoxic activities against seven mammalian cell lines (L929, KB3.1, MCF-7, A549, PC-3, SKOV-3, and A431) and antiproliferative effects against the myeloid leukemia K-562 cancer cell line. Both 1 and 2 were shown to possess properties inhibiting the F-actin network, prompting further hypotheses that should to be tested in the future to enable a well-resolved concept of the structural implications determining the bioactivity of the cytochalasin backbone against F-actin.

15.
PLoS Genet ; 18(1): e1010016, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35089924

RESUMO

The functional properties of neural circuits are defined by the patterns of synaptic connections between their partnering neurons, but the mechanisms that stabilize circuit connectivity are poorly understood. We systemically examined this question at synapses onto newly characterized dendritic spines of C. elegans GABAergic motor neurons. We show that the presynaptic adhesion protein neurexin/NRX-1 is required for stabilization of postsynaptic structure. We find that early postsynaptic developmental events proceed without a strict requirement for synaptic activity and are not disrupted by deletion of neurexin/nrx-1. However, in the absence of presynaptic NRX-1, dendritic spines and receptor clusters become destabilized and collapse prior to adulthood. We demonstrate that NRX-1 delivery to presynaptic terminals is dependent on kinesin-3/UNC-104 and show that ongoing UNC-104 function is required for postsynaptic maintenance in mature animals. By defining the dynamics and temporal order of synapse formation and maintenance events in vivo, we describe a mechanism for stabilizing mature circuit connectivity through neurexin-based adhesion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Axônios/metabolismo , Espinhas Dendríticas/metabolismo , Terminações Pré-Sinápticas/metabolismo
16.
MycoKeys ; 90: 85-118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760420

RESUMO

During the course of a study on the biodiversity of endophytes from Cameroon, a fungal strain was isolated. A multigene phylogenetic inference using five DNA loci revealed that this strain represents an undescribed species of Diaporthe, which is introduced here as D.breyniae. Investigation into the chemistry of this fungus led to the isolation of two previously undescribed secondary metabolites for which the trivial names fusaristatins G (7) and H (8) are proposed, together with eleven known compounds. The structures of all of the metabolites were established by using one-dimensional (1D) and two-dimensional (2D) Nuclear Magnetic Resonance (NMR) spectroscopic data in combination with High-Resolution ElectroSpray Ionization Mass Spectrometry (HR-ESIMS) data. The absolute configuration of phomopchalasin N (4), which was reported for the first time concurrently to the present publication, was determined by analysis of its Rotating frame Overhauser Effect SpectroscopY (ROESY) spectrum and by comparison of its Electronic Circular Dichroism (ECD) spectrum with that of related compounds. A selection of the isolated secondary metabolites were tested for antimicrobial and cytotoxic activities, and compounds 4 and 7 showed weak antifungal and antibacterial activity. On the other hand, compound 4 showed moderate cytotoxic activity against all tested cancer cell lines with IC50 values in the range of 5.8-45.9 µM. The latter was found to be less toxic than the other isolated cytochalasins (1-3) and gave hints in regards to the structure-activity relationship (SAR) of the studied cytochalasins. Fusaristatin H (8) also exhibited weak cytotoxicity against KB3.1 cell lines with an IC50 value of 30.3 µM. Graphical abstract.

17.
MycoKeys ; 93: 81-105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761911

RESUMO

In a survey of xylarialean fungi in northern Iran, some specimens attributable to the genus Nemania were collected, cultured and sequenced. Morphological evidence and phylogenetic analyses of a combined ITS, LSU, RPB2 and TUB2 gene dataset confirmed the presence of Nemaniadiffusa and N.serpens in Iran for the first time. Furthermore, the new species N.hyrcana, which shows similarities to N.subaenea and its putative synonym N.plumbea, but significantly differs from the latter in its DNA sequences, was encountered. All species are illustrated, described and discussed. In the phylogenetic analyses, for the first time, the overlooked ex-type ITS sequences of the neotype of the generic type, N.serpens and that of the holotype of N.prava, were added to a multi-gene matrix of Nemania. This revealed that the two accessions of N.serpens (HAST 235 and CBS 679.86), for which multigene data are available in GenBank, are misidentified, while the Iranian accession of N.serpens has an almost identical ITS sequence to the neotype, confirming its morphological species identification. The two previously accepted species of Euepixylon, E.udum and E.sphaeriostomum, are embedded within Nemania and are revealed as close relatives of N.serpens, supporting the inclusion of Euepixylon in Nemania.

18.
Elife ; 102021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34766905

RESUMO

Neuromodulators promote adaptive behaviors that are often complex and involve concerted activity changes across circuits that are often not physically connected. It is not well understood how neuromodulatory systems accomplish these tasks. Here, we show that the Caenorhabditis elegans NLP-12 neuropeptide system shapes responses to food availability by modulating the activity of head and body wall motor neurons through alternate G-protein coupled receptor (GPCR) targets, CKR-1 and CKR-2. We show ckr-2 deletion reduces body bend depth during movement under basal conditions. We demonstrate CKR-1 is a functional NLP-12 receptor and define its expression in the nervous system. In contrast to basal locomotion, biased CKR-1 GPCR stimulation of head motor neurons promotes turning during local searching. Deletion of ckr-1 reduces head neuron activity and diminishes turning while specific ckr-1 overexpression or head neuron activation promote turning. Thus, our studies suggest locomotor responses to changing food availability are regulated through conditional NLP-12 stimulation of head or body wall motor circuits.


Assuntos
Adaptação Psicológica , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Locomoção/genética , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/genética
19.
Cell Stem Cell ; 28(11): 2000-2008.e4, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34478642

RESUMO

Ductal cells have been proposed as a source of adult ß cell neogenesis, but this has remained controversial. By combining lineage tracing, 3D imaging, and single-cell RNA sequencing (scRNA-seq) approaches, we show that ductal cells contribute to the ß cell population over time. Lineage tracing using the Neurogenin3 (Ngn3)-CreERT line identified ductal cells expressing the endocrine master transcription factor Ngn3 that were positive for the δ cell marker somatostatin and occasionally co-expressed insulin. The number of hormone-expressing ductal cells was increased in Akita+/- diabetic mice, and ngn3 heterozygosity accelerated diabetes onset. scRNA-seq of Ngn3 lineage-traced islet cells indicated that duct-derived somatostatin-expressing cells, some of which retained expression of ductal markers, gave rise to ß cells. This study identified Ngn3-expressing ductal cells as a source of adult ß cell neogenesis in homeostasis and diabetes, suggesting that this mechanism, in addition to ß cell proliferation, maintains the adult islet ß cell population.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Camundongos , Proteínas do Tecido Nervoso/genética , Pâncreas
20.
Mol Cell Endocrinol ; 538: 111459, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543699

RESUMO

Though embryonic pancreas progenitors are well characterised, the existence of stem/progenitor cells in the postnatal mammalian pancreas has been long debated, mainly due to contradicting results on regeneration after injury or disease in mice. Despite these controversies, sequencing advancements combined with lineage tracing and organoid technologies indicate that homeostatic and trigger-induced regenerative responses in mice could occur. The presence of putative progenitor cells in the adult pancreas has been proposed during homeostasis and upon different stress challenges such as inflammation, tissue damage and oncogenic stress. More recently, single cell transcriptomics has revealed a remarkable heterogeneity in all pancreas cell types, with some cells showing the signature of potential progenitors. In this review we provide an overview on embryonic and putative adult pancreas progenitors in homeostasis and disease, with special emphasis on in vitro culture systems and scRNA-seq technology as tools to address the progenitor nature of different pancreatic cells.


Assuntos
Redes Reguladoras de Genes , Pâncreas/fisiologia , Pancreatopatias/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular , Homeostase , Humanos , Pâncreas/citologia , RNA-Seq , Medicina Regenerativa , Análise de Célula Única , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...